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i

The NationalAeronauticsand SpaceAdministration{NASA)is

mission{recentlydesignatedGalileo)areto exploretheplanetJupiter

and to gathercluesto the originof the solarsystem. The probewill

carryan arrayof instrumentsfor investigatingthe Jupiteratmosphere,

" includinginstrumentsto measurethe atmosphericcompositionandp--__ a

_"' localradiativeenergybalance.

BecauseJupiteris a massiveplanet,with roughlyslxtimesthe

Ii gravityof Earth,the inertialvelocityof the entryprobewillbe
approximately60 km/sec. However,Jupiterhas a highrotationalspe_dof

)j_ about12 km/sec.Usingthisrotationalspeedduringtheentrytrajectory

_._ resultsin a relativeentryvelocityof roughly48 km/sec. Becausethis

is a hypersonicentryintoa highlyradiativelyparticipatingatmosphere,

I
strongshocksenvelopethe probe,creatingan extremelyhostileradiative

IT and convectiveheatingenvironment.
('

L} To accommodatethe intenseentryheating,effectivethermal
L),

'i protectionsystemsmust be designed.The heatshieldmust be ableto
|

_, withstandtimeintenseheating,yet be 'lightenoughthata maximumpayload

ii of scientificinstrumentscanbe housed. Carbon-phenollchasbeen

_ identifiedas the baselinematerialfor thismission.As earlierstudies

i I-I
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++_ show. ca,'bo,l-phe+lolic can provide the required the_nal protectiolt for a

l heatshi,_ld weight allocation of 30 to 45 percent of the probe weight.
• L_ The heaLin,_ envirL.mlent is the primary factor at't'ecLing the weight

/

1- of the heatshield. Predictions of the heatinq environment must consider

_)_, several pt_ysical par_neters including the atmospheric composition
Of the

:t pla.eL, the probe configuration, elltry angle and velocity, and the probeq

i shape cllange effects. Radiative and convective heating rates are also

1 significantly affected by the massive blowing. Figure 1-1 shows the

candidate G,_IiIeo probe cot_figut'ation.
The objectivesof the presentstudy are to generateheating

I environmentsfor the entry probe, to define an experimentto assess theimport'anceof heatshieldspallation,and to fabricategraphiticmaterials

tllat co_ltain tr,:_nsition metals. Additional objectives of this study are

i to investigate the vortical layer effects on cold wall convective heating
\
) rate and to assess the importanceof entropy layeron cold wall radiative

heatingrate.

the foliowir:gsectionspresentthe resultsof this study. Section2

i_ dew;lol)S a valid procedure for predicti.g wall heating and ablation rates

about the probe forebody. Solutio,s for JupiterOrion model nominal

atmosphericentry are obtai1_edand are comparedwith other existing

_._ solutions. Solutions are also presented for tile candidate Galileo probe

at entry conditions for which results are not available.

Entropy I:_yer effects on convective lleating rate are analysed and

tt_e c(_llputed results are presented in Sectio_ ._. The mc_ttent.um-e1_ergv

integral tech. ique is used i_ assess the influe.ct, l_fvz.'tical layer on

heati.g rate,

• " O0000002-TSB01
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The heating environment drives the material response which is

l usually estimated assumingthat thermochemtcal ablatton is the only_ . mechanismfor mass removal. However, if the heathsleldlosesmaterial by

,_' mechanicalerosionor spallation,the weightof heatshieldwill increase.

This increasedweight is a real threat to the Galileomission. To assess

the Inlportanceof spalIation, an earIlerstudy recommendedan experimental _

approach. In Section4, resultsof a feasibilitystudy to performan

experiment,a candidatetest facility,and a test matrix are presented.

Though carbon-phenolichas been identifiedas the candidate :)

heatshie!dmaterial for the Galileoprobe,the severe entry heating

conditionsand the large requiredweightof heatshield,prompted a

recommendationto investigatenewly devclopedmetal containing :,

carbon-carbonmaterials. Section5 sL'mmarizesthe material selection,

fabrication,and evaluationof the metal containingcarbon-carbon

compositesfor use on the Galileoprobe. _

ii!iI Severalmodels are availableto describethe Jovian atmospheric

structure. The effectof the variousmodels on entry heatingenvironment iI
i

are investigatedin Section6. Entry trajectorycalculationsperformed *_•I

oblate spheroid. The effectof nonsphericalshape of the planet on entry

_°Ii trajectoryis also consideredin Section5. !

!

I-4
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SECTION2

OFF-STAGNATIONPOINT FLuWFIELDS
FOR PLANETARYENTRY PROBES

The importantphysicaleventsencounteredduringplanetaryentry

are significantlydifferentfrom those encounteredduring earth reentry.

In particular,the shock layer radiationcausesmassive ablationfrom the

wail which affectsthe entireflowfleld;the viscous/mixingregion assumes

the characterof a free shear/mixingregion insteadof a boundary;ayer.

This requiresa significantlydifferentmodelingapproach. Transitionand

turbulenceare also importantsince they changethe characterof the

mixing layer and, consequently,change the radiationflux reachingthe

wall. Therefore,benchmarksolutionsof the radiationcoupledflowfield

equationsare necessaryto (1) understandthe physicalevents drivingthe

aerothermodynamicheating,(2) supportthe designof candidateheatshields,

and (3) supportthe selectionof approximatemethodsand/or cor,'elations

for use in engineeringtrade studies.

The objectiveof the presentstudy is to developa valid procedure

for predictingwall heatingand ablationrates about the probe body.

Methodsfor predictingthese quantitiesat the stagnationpoint were

describedin a previousstudy (Reference2-I). In the present study,the

methodologyis extendedto off-stagnatlonconditions. Emphasisis on

1 _ (I) the nonsimilarterm_ in the equations,(2) the turbulenceterms,,_nd

iT

2-I
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(3) the solutton procedure. Reference 2-2 discusses the fomulatton and

::" solutton procedure. This discussion presents solutions, compares

laboratory data to assess the sensitivity of the predictions to basic

-_ assumptions, and compareswith the predictions of Moss (Reference 2-3) for

-J the Jupiter entry. Heating environments over the candidate Galileo probe

at entry conditions for which heating rates have not previously been

available are also presented.

2.1 PREglCTIONSOF LABORATORYEXPERIMENTS

The highlycooledturbulentboundarylayer data of Hopkinsand

Nerem (Reference2-4) were selectedfor the first set of comparisons. The

experimentconsistedof a shodk tube used as a driverto producea high

enthalpy,supersonicflow insidea tube. Instrumentationincluded

uncoatedplatinumcalorimeterheat transfergages positionedat 2.54,

6.35, 8.90, 11.4, and 14 cm from the leadingedge to measurethe heat

transferdistributionalong the tube during steadyflow conditions. A

schematicof the apparatusand the flow conditionsare given in

Figure2-I. This is a moderateReynoldsnumber;supersonicflow of

high-temperaturedissociatedair composedprimarilyof nitrogen,oxygen,

and oxygen atoms. The ratio of edge-to-walltemperatureputs this

experimentaldata in the highlycooled boundarylayer category. The

boundarylayer was artificiallytrippedto turbulentflow at a point

2.5 cm from the leadingedge, roughlythe distanceat which natural

transitionoccurs (trippingthe boundarylayer simplyensuresturbulent

flow beyond the 2.5 cm station). The preciselocationof transitionis

useful when comparinganalysesto data because it eliminatesthe

ullcertaintycausedby intermittentturbulentflow.

2-2
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Tw : 298°K 1

Figure 2-I. Schematicof Hopkins and Ne_em'sApparatus

The predictions,comparedto the data in Figure2-2, are comprised

of two differentcodes and five versionsof the mixing lengthmodel. The
3

presentcode, withoutdensityin the expressionfor the mixing length,is

in very good agreementwith the data and is closerthan any of the

others. With densityin the mixing lengthequation,the presentprocedure

significantlyoverpredictsthe data.

The other predictionsshown in Figure 2-2 were made with the

BoundaryLayer IntegralMatrix Procedure(BLIMP)as modifiedby Bonnett

and Evans (Reference2-5). BLIMP is a well-developed,widely used,

nonradiatingboundarylayerpredictiontechniquewhich has, as alternate

options,the mixing lengthmodels of Kenda11,et al., (Reference2-6),

2-3
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i'

o /_i _ Without density Present

,'_; _ Hith density I calculati_n_

t',c ..... Bt_ckwith and Bushnell (Reference _-71 :',_del (Reference2-5)

_I; a__ '

' Trip Hopkins and Nerem data (Reference2-4)60

4O

_ zo
J

0 2 4 6 8 lO 12 14 16 18

Distance from leading edge (cm)

Figure 2-2. Comparison of Heat Transfer Predictions with the Data
of Hopkins and Nerem (Reference 2-4)

_ Beckwithand Bushnell(Reference2-7), and Cebeci and Smith (Reference2-8).

ii°I It is immediatelyevidentthat the turbulentmodels with density(the Kendall

I and the presentmodel), significantlyoverpredicthighly cooledwall boundary

layer heat transfer. The other models showmuch better agreementwith the
Y

jl. level and the trend of the data. This comparisonindicatesthat the

_" incompressiblemixing length expressionis preferablefor applications

I involvinghighly cooledwalls. Therefore,it is employed in the presentstudy.A second set of predictionswas obtainedfor comparisonwith the

I turbulentboundarylayer data taken by Hartunian,et al. (Reference2-9),

I behinda moving shock wave, which was analyzedby Mirels (Reference2-10)

using an approximatetheory. Figure 2-3 shows that the presentpredictions,

the approximateanalysis,and the data are all in excellentagreement.

i. 2-4
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0

6 - 0 £xpertn_nt .- glass wall _-

0 Experiment -- steel wall _,

• Present nmthod (
o _ _

0 _) (Reference 2-]0)

3 _1 I I ,I I I I
Z 3 4 5 6 7 8

Shock Hath number (Ms)

Figure2-3. Comparison,of PredictionswithDataof Hartunianet al.
{Reference2-9)forTurbulentHeatTransferin Air

t

A thirdset of predictionswas obtainedfor comparisonwiththe

turbulentboundarylayerdatatakenby Martin{Reference2-II)behinda

movingshockwave. Comparisonswithdirectlymeasuredquantitiessuchas

temperatureprofilesweresatisfactory;comparisonwithquantitiesderived

by the experimenter{velocityprofilesandmomentumthickness)wereonly

fair,but arewithinthe uncertaintiesintroducedin reducingand

] interpretingthedata.

2.2 FLOWFIELDSABOUTPLANETARYPROBES

;_ Currentcandidateprobeshapefor theJovianentrymissionis a

sphericallytipped45 degreehalfanglecone. The importantprobe

configurationandflightparametersare listedin Table2-I,and flight

;" conditions through the hypersonic heating pulse are presented in Table 2-2



Table 2-1. Probe Configuration and Entry Parameters

Probe Conflquratlon(sphericallybluntedconicalforebody)

Half cone angle (degree) 45
Base radius (m) 0.3112
Bluntness rattG 2
Probe mass (kg) 242
Drag coefficient 1.094
Ballistic coefficient (kg/m2) 181.82

Atmospheric Model (by Orton)

H2/He percentage (volume) 89/11

Entr_ Parameters

Inertialentry wlocity (km/s) 60
Inertialentry angle (degree) -g
Entry altitude(km) 1000
Entry latitude(degree) -6.4
Aximuth angle of inertial

velocityvector (degree) 72.5
I

for entries into the Orton nominalatmosphere. Moss (Reference2-3) has

obtainedsolutionsat some entry conditions(designatedby asterisks).

Benchmarksolutionsare unavailableat any of the remainingflight

conditionsprior to the presentstudy.

A few initialsolutionswere obtainedto assessthe numberof

): iterationsrequiredto convergeon the body shape. The Falangaand Olstad

(Reference2-12) correlationwith a slight smoothingin the corner region
b

is used to estimatethe initialshock shape. A comparisonbetweenthe

predictedand actualbody shapes is shown in Figurs 2-4 for flight -

conditionscorrespondingto 109 sec after entry. The predictionswere

obtainedon the first iterationand comparequite well with the actual

body shape. Predictedand actualbody shapeswere also comparedfor two

2-6
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Table 2-2. FreestreamConditions

..... .m -

-_ P lime Velocity DensiJ_y
J (s) (km/s) (kg/mJ)

99.9 48.07 2.651 x 10-5

i

103.9 46.96 7.188 x 10"5 _;

107.2 44.83 1.635 x 10-4

109. 42.88 2.546 x 10-4

110.2" 41.16 3.375 x 10-4

111.3" 39.29 4.364 x 10-4

112.2" 37°52 5.340 x 10-4

113.5" 34.67 7.017 x 10-4

114.2" 33.01 8.053 x 10-4

115.3" 30.31 9.892 x 10-4

116.4 27.54 1.203 x 10-3

117.4 25.07 1.414 x 10-3

*HYVIS (Moss,Reference2-3) solutions
are avai!able

2-7
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i otherflightconditions.In bothcases,onlyone iterationwas required,sincebothpredictionsshowedgoodagreementwithactualshapes.

l Unblownsolutionswereobtainedat 111.3sec for comparisonwith

I the peakheatingsolutionsof Moss (Reference2-3). The radiativeheating
t

ratesto the wall,presentedin Figure2-5,showsthat agreementis

) excellentfar backon theflank,andfair in the noseandoverexpanslon i

areas. The differencein thestagnationregionis due to the pressure _

gradientsemployedin the calculation.The presentmethodologyusesa

shockfrontradiusof curvature,whereasMoss (Reference2-3)usesthe

bodyradiusof curvature.Accordingto the thinshocklayerapproximation

basicto bothpredictionprocedures,the tworadiiof curvatureare

identical.In reality,the shockradiusof curvaturesis somewhatlarger,

makingthebodyin thepresentprocedureappearto havea largernosethan

itdoes in theMoss {Reference2-3)procedure.
(
t Solutionswerealsoobtainedat 111.3secwithblowlng;and assuming

if a steady-statesurfaceenergybalance.The radiativeheatingratesat the

1 wall arepresentedinFigure2-6. The unblownheatingratesreplottedon

) thisfigureconfirma majorfindingattributedto Moss (Reference2-3):
$

I the blownradiativeheatingratesovertakeand surpassthe unblown
radiativeheatingratesbackon thecone. This effectis notyet

understood,but it is clearlyassociatedwiththe turbulencein theflow.

It updatesandmodifiesimportantlessonslearnedfromearlierlaminar

stagnationandoff-stagnationpointsolutions.

Additionalblownsolutionsobtainedat 111.3sec arepresentedin

Figure2-7 for theflankregionof the body. One set of predictions

presentedin thefigureshowsthe effecton theradiativeheatingratesofl

.... l, '
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_ ()rton nominal atmo_phoro

candidate Galllm) proho
t : III,3 _pc

_ 400

(Refrrc, ncp 2- 3 )"-'m'% method

_ 200 -

o i I I I
o._ I.N 1.5 2.

N'_t_.alizerl _.trea._is,, distant.. (_,/RN)

Figure 2-5. ComparisonswithMoss (Reference2-3) for Unblown
TurbulentFlows

varyingthe normalizedwake mixing length (_o) at the first space station

after transition.* The radiativeheatingrates on the probe flank are

fortunatelynot very sensitiveto changesin this parameter. The present

solutionsare also comparedwith one obtainedby Moss (Reference2-3) in

the figure. Agreementis reasonablygood in both level and trends.

*The initialvalue of the normalizedwake mixing length (_) is a free
parameterin the solutionprocedure. Its value sets the virtualorigin
of the turbulence. A baselinevalue of_ o = 2 as obtainedfrom a local
wake law, Equation(2-32)of Reference2-2.
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_!)L Normalized velocity and enthalpy pt'ofiles are presented in Figures 2-8

't and ?-9, respectively. Comparison between the present predictions and those

4 , _)1MLJS:;(RefL,rence 2-3) show important differences all across the shock

layer. Moss' solutions show significantly smaller gradients in the near well i

(y/,_,.4) region wlltch can be partially attributed to differences in the

blowing rates; his are about 15 percent higher than tlmse in the p)'esent

study. However, this is not likely to account for a significant fraction of i

all the differences observed. Apparently, the eddy viscosities predicted in

tile wall-law region differ significantly. Differences existing in the outer

region of the shock layer, as seen in Figure 2-8, were expected, and were

attributed to turbulent eddies in this region by the present model and to

laminar flow in this region by Moss' (Reference 3-3) model.

The heating rates at the s/RN = 2.61 station on the flank at

111.3 sec (corresponding to profiles presented in Figures 2-8 and 2-9) are:

Heat_e_ Present Study Ho___sss

Convective 12.7 Mg/m? 13.07 MWm2
Radi at i ve 74.6 I_l/m2 80.09 I_/m 2

Ag_'eL_tentis good relative to the needs of the heatshield designer. Howew,r.

=_;Ji_ this agreement is surprisingly good when taking into account the considerable

'I differences between the two models and between the predicted profiles. It
(,

i must be concluded that the heating rates to the wall (especially the dominant
radiative ccunponent)are not sensitive functions of the flowfield proftle

t ' it is also interesting to compare the normalized enthalp,v profile to

=i,/ the m_alized velocity profile for each of the p_'edictive app_'oaches.

Agreement is excellent, makin9 Reynolds' analogy an excellent approximation

-t I fo_' such flows.

__! ;'-13: t
_r
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•8 - Orton nominal atmosphere
candidate Galileo probe shape

"'_ t -- III.3sec J|

:° Moss (Reference 2-3) ..-- "/ /
4 " "",., - .J -I

o 2 -- /-/ / Z___ Present method -I

//zf (_. = 0.201) .3

0 .2 .4 .6 .8 1.

Nomalized velocity (u/u e)

Figure 2-8. Velocity Profiles for Turbulent Flows With
Steady-State Blowing

_ Solutionswere also obtainedat the earl_ flight conditionswhere

resultswere unavailableprior to the presentstudy. The convective

heatingrates are presentedin Figure 2-10, and the radiativeheating

rates are given in Figure 2-11. When generatingthese solutions,

transition;as assumedto occur at the first space stationoff the

stagnationpoint. Interestingly,the maximumradiativeand total heating

rates are seen occurringin betweenthe stagnationpoint and the corner.

This indicatesreattachmentand the destructionof the ablationlayer

shieldingthe wall from the shock layer radiationin the immediateregion

of the stagnationpoint.
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Orton nominalatmosphere _.
_ 8 - candidate Gall leo probe shape _• t -- 111.3 sec

_ s/RN --2.614
_.._

u 6 - ]e" °

_ J

Moss _ _..-- /I
(Reference 2-3) _ _ -"" ZI

N .4 -- (m--0.234) _._'_

"'- _',,v ////z z _/ I
o

.2 / _,_ Present method _

/ =o.2oi)

0 I I I I
0 .2 .4 .6 .8 I.

} Normalizedenthalpy He.Hw]
/l

_ Figure 2-9. EnthalpyProfilesfor TurbulentFlows With

_} Steady-StateBlowing ,

2.3 CONCLUDINGREMARKSOn the basis of the presentstudy,the followingconclusionswere

reached relative to the prediction of off-stagnation point flowfields, the

comparisonwith laboratorydata, and the aerothermal_nvironmentsfor

_: Jovian entry:

• A previouslydevelopedpredictionprocedure(Reference2-1) canbe upgradedto includenonsimilarterms, a turbulentmodel and

p a matchingprocedurefor obtainingsolutionsabout the body

!- 2-15
}.

00000002-TSC04



)

{,

t e A reasonable turbulent model can be postulated which draws
)

i_: heavily from experience with free-mixing layers, Jets and wakes

:_ e The use of the Falanga and Olstad (Reference 2-12) shock shape
i_ correlation allows satisfactory solutions to be obtained in ,

only one iteration ,i
i

!_ • The predictions compare well with the laboratory experiments _

of Hopkins and Nerem (Reference 2-4), Hartunian, et al. ii

_ (Referencez-g), Martin (Reference2-11),and with the i

approximatetheoryof Mirels (Reference2-10) ,,)i

• Fair agreementwa, obtainedwith the quantitiesMartin !_
(Reference2-11) derivedfrom his data

• Satisfactorycomparisor,with the wall heatingrates of Moss

_z_ (Reference2-3) for both blown and unblownflows

• The presentpredictionsconfirmedMoss' (Reference2-3) finding

of an anamolouseffect of blowingon the probe flank

• Qualitativebut not quantitativeagreementwas found with the

flowfieldprofilesof Moss (Reference2-3)

• Early time solutionsfor wall heatingrates were obtainedand

presented

• Peak heatingwas observedto occur at off-stagnationlocation

near the reattachmentpoint where the ablationproductlayer

breaks up

2-16
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SECTION3
i.

ENTROPYLAYER EFFECTSON GALILEOPROBE
CONVECTIVEHEATINGENVIRONMENT

As discussedin Section1, the heatingenvironmentis the primary

factor affectingthe weight of the heatshield. Predictionsof the heating

environmentmust considerseveralparametersincludingthe atmospheric

compositionof the planet,the probe configuration,entry angle,entry

velocity,and the probe shape changeeffects.

The radiativeand convectiveheatingrates to the probe surfacecan

be determinedeither by the HYVIS code (Reference3-I) or by the RASLE

_I code (Reference3-2). These two availablenumericalproceduressolve the
|

i_I boundarylayer form of the Navier-Stokesequationswhich consider

_ radiation,turbulence,and massiveblowing. These two numerical

o

1 proceduresare of the benchmarktype; they require~4 to 5 min of computer

time for each solutionand are expensiveto use for parametricdesign

studies. Moreover,these two codes requirecareful attentionin setting

up each computerrun. These factorsled to the developmentof approximate

) methodswhich are computatlonallyfaster to obtain solutions.

I For Galileoprobe heatshielddesignparametricstudies,the three

widely used computercodes are the AerothermdevelopedTrajectory-Heatlng

EnvironmentTechniques/Analysis(THETA)(Reference3-3), GeneralElectric

I CompanydevelopedThermodynamicOuter Planet InsulationCode (TOPIC)

t 3-1
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-'_' (Referenc(_3-4), and NASA-AmesResearchcenter developedCoupledEntry

Code (Reference3-5). These designtools use approximategoverning

_ equationsand/or correlationsto estimatethe radiativeand convective

-_ heatingrates. Like most of the approximatemethods, the codes are not

accurate. For example,the effectsof flowfieldgradientscaused by the

bow shock curvatureon the radiativeand convectiveheat transferare I
neglectedin these codes. The entropylayer is importantunder certain

flowfieldconditions. Entropylayer effectsare thoughtto be sn,allfor _ _

large half-coneangledplanetaryentry probes and are, therefore,usually i

neglected. However,the candidateGalileoprobe is a spherecone

configurationwith the half-coneangle being set at 45 degrees.

The objectiveof this task is to determine,from basic governing

equations,the effect of entropylayer on the probe heatingenvironment.

Only the convectiveheatinghistorywill be consideredon this task. The

followingsubsectionspresenta brief summaryof previousresearchin this

area, the basic governingequations,solutionprocedure,and results

obtainedfor a 45 degree sphere-coneshapedprobe enteringthe nominal

model (Orton)Jupiteratmosphere.

3.1 BACKGROUND

Entropylayer or the vorticallayer developson blunt bodies at

hypersonicflow conditionsdue to the bow shock curvature. Neighboring

streamlinesin a vorticallayer pass througha varyingshock wave angle

and attaindifferententropylevels. For the same staticpressure,lower

shock angle correspondsto lower entropyand higher velocityin the shock

layer. As the higher velocitystreamlinesare swallowedby the growing

boundarylayer,the kineticenergy in the boundary layerand the heat

3-2
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transfer to the surface are increased; this increase in heat transfer may

,!_,' be significant,

_.i__ _° The influenceof entropylayer on heat transferrates has beenconsideredby the earth reentryvehicledesign community. For analyzing

nosetipablationresponse,particularlyfor a RV, only convectiveheatingrate

t is important. Ferri (Reference3-6) presentedapproximatemethodsof heat

transfcrthat includedentropygradienteffectsfor the case of laminar

boundarylayer. Experimentalresultsindicatedthat entropylayer effectsare

large and important. Rubin (Reference3-7) presenteda simplegraphical

approachto determinethe variationof the flow conditionsat the outer edge

of a laminarboundarylayer over bluntedcone resultingfrom entropy

gradients. His resultsindicateda significantincreasein convectiveheating

over levelscomputedon the basis of flow eminatingthrougha normalshock.

Edquist(Reference3-8) extendedRubin'swork to turbulentboundarylayersand

found that entropyeffectsincreasethe turbulentheat transferrates by

factorsof 2 to 3.

I Recently,Dahm, et al. (Reference3-9) developeda momentum/energyintegraltechnique(MEIT),which startswith and retainsthe exact boundary

layer equations. The effectsof wall blowing,acceleration,curved shock,and

I boundarylayer propertiesare properlyaccountedfor via the use of influence

] _ coefficients. These influencecoefficientsare includedin the formulationof

!7 both the local Stantonnumberand frictioncoefficient.
i_
:_ A detaileddevelopmentof the governingequations,solutionprocedure,

,_ and validationof MEIT methodologyare describedin Reference3-9. Only a

summaryof the equationsand a brief discussionof the solutiontechniqueare

presentedhere.

P
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_: 3.2 GOVERNINGEQUATIONS

"I The boundarylayermomentumand energy integralequationsare

I, r _ rPeU 'w ,w
' - _ • + (PV)wUI + HO (3-I)

and

li .
i _Id " hw) ¢ = qw + (PV)w (ht,i,w hw) (3-2)

r d's rPeUe(ht,e

I The variousquantitiesthat appear in the above integralequations
are defined below:

I momentumthickness0 :

_ooopu ui - u0 = PeUe Ue dy (3-3)

:i energy thickness¢:
¢ = /'® Pu ht,i " ht

ht,eJoPeUe . hw dy (3-4)
?;

boundarylayer shape factor:

H --6 le (3-5)

_I displacementthickness6*

"C( )6 = I Pu I
PiUe dy (3-6)

In the above equations, the subscript e refers to the properties evaluated at

the boundarylayer edge; the subscripti refersto inviscidproperties. The

-°_I quantityui,w is the inviscidvelocityat the wall. The terms ht,i and

-I Ht,e refer to local and edge invlscldstagnationenthalpiesrespectively.For nonvortical inviscid boundary layer flows, u i = Ue, ht, i = ht, e is

{ used for all streamlines;the above equationsreduce to standardintegral

_ equations.

iI. 3-4
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To solve the tntegral equations, the properties at the edge of the

boundary layer are needed. The definition of boundary layer edge,

( particularlyfor vorticalInvlscldflows, is not straightforward.

Usually, the boundarylayer edge is definedas the locationin the

boundarylayer where the local velocityis equal to O.gg times the local
I

Inviscldvelocity. Though this criterionis not fully satisfactory,Oahm,

et at., recommendedthis criterionas reasonable,and this criterionis

used in the presentcalculations.

z_ The edge propertiesneeded are obtainedwith the use of the

entrainmentrelation. The entrainmentrelationcan be formulatedby

i_ performinga mass balanceon the flow, i.e.,

(_2) = 2_r_6 pudy- 2_ _°(PV)w rds (3-71
pu

where y determinesthe shock angle throughwhich the boundarylayer edge

streamlinehas passed. The entropybehindthe shock is shock angle

dependent,as are the propertiesat the edge of the boundarylayer.

Equation(3-7) can be rewrittenas

p®u®_2 =2rFueRee -2 _s (pv)w rds (3-8)

where

F = " (3-9)
0

y (3-Io1
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%ue
_. Re8 _ -_ (3_11)
_: Je

,_( The wall shear stressand the heat transfercoefficientappearing

'] in Equations(3-I) and (3-2) are relatedto frictioncoefficientand

Stantonnumber,i.e.,

Tw : _ PeUe2 Cf (3-12)

]
qw = PeUeCH(hr" hw) (3-13)

where hr, the recoveryenthalpyis given by

2

hr = he + R --ue2 (3-14)

where R is the recoveryfactory.

The auxiliaryrelationsneeded to solve the integralequationsare

given below:

Laminarflow:2

_ Cf,_,o _ 0.245

2 Re0 (3-15)

-) Ch,_,o= 0"22/pr4/3Re¢ (3-16)
-7

=3.029 o.o614 (3-17)

Tw 0.0371 I/2F_ : 1.521 + 4.388 _ee+ (3-18)

R_._ PrI12 I{ I'I)

3-6
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:"_":l Turbulent Flow:

:t Cf, t,o RT e + 100 + Re0 .1°g10 Re(}
(3-20)

0.0123 Re_ (lOgl0 R%)-1.6 (3-21)--p,4°/;-2,% �p-"(oo
Tw.

• Ht = 2.285(1 + 3.2 e"n) _ee 0.96 (3-22)

0.37 + J_nP,e(}

i n : 2"79- 0"14 _n R% (3-23)

Ft = 5.28 £n + 2. + (n - 5) (3-24)Rt = Pr1/3 (3-25)

!

_ ;/ For planetaryentry probes,boundarylayer effectssuch as

l
_:_ acceleration,propertyvariation,and vorticallayer effects,are

/i!1 important. Since the purposeis to computethe non-blownconvective

heatingrates to the probe surface,the effect of wall blowing is not

I,,i includedin the presentcalculations. The variouseffects are accounted

\ for by modifyingthe Stantonnumber and frictioncoefficientsgiven

_ above. The modificationis accomplishedwith the use of influence

_: coefficients.

/_ In general,both the Stantonnumber and the frictioncoefficient

i_I are writtenas

Z

( Cx,y : Cx,y,o]7 Ix,y,z (3-26)
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j

_I and

i's %%Uer2_. ds (3-32)
t

"0 i

For turbulent flow, only the first terms of the appropriate basic

turbulent laws are modified by the above influence coefficients.

Property Variation -- To account for property variation, the properties

such as density, viscosity, and Prandtl number are evaluated at the

reference enthalpy h'

l h' = ahe + bhr + chw (3-33)
J
D Influence coefficients are given by

Ix'y'P kPe kie y = _, t _

The constants a, b, c, d, and e for various x, y combinations are listed

in Table 3-1.

Inviscid Vortici__t.y_Effects

Due to lack of data base on which to derive the vorticity influence

coefficients, ali four of them were set equal to 1.

b

= l for x = f, h and y = t, t (3-35) _,

The relations given above for H, F, Cf, aqd Ch are only for

fully laminar and for fully turbulent flows. However, the flow may
t

transist to turbulent from laminar conditions. To estimate these four

3-9
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Table 3-1. Constants Used to Evaluate Property Influence Coefficients

Constant
_ Property ......

I nf 1uence
Coefficients a b c d e

w,

If,l, p 0.23 0.19 0.58 0 0

Ih,l, p 0.23 0.19 0.58 1 1

If,t, p 0.36 0.19 0.45 1 0.25
'

Ih,t, p 0.36 0.19 0.45 , 0.25

parametersfor transitionalflow, the followingrelationwas recommended

in Reference3-9.

P : (I - f)P_ + fPt (3-36)

where P is one of the four parametersmentionedabove, and f is the

intermittencyfactor. The equationfor f is

Re_ (Cf,t - Cf,_)

where the subscripttr refers to conditionsat the transitionpoint.

3.3 SOLUTIONPROCEDUREFOR THE BOUNDARYLAYER INTEGRALEQUATIONS

The solutionprocedurefor the governingintegralequationsconsist

of two steps. First, series solutionsat and in the vicinityof the

stagnationpoint are obtained. Second,away from the stagnationregion,a

finite-differencenumericalscheme is used to obtain solutions.

3-10
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Before the start of the solution procedure, the surface shape,

pressure, and temperature distribution are to be specified, in addition,

" fr_ll known freestream conditions, the bow shock shape needs to be

• calculated. Relations which describe environmental gas thermodynamic and

I transportpropertiesare also needed.At the stagnationpoint, limitingsolutionsto the momentumand

' energy integralequationsare obtained. From Equations(3-1) and (3-2),
i

_ the limit as s approachesto zero, the momentum thicknessis given by

l O.245 vo00 = duel' i_r Cf,&, i (3-38)
i_ (3+H)dTIo

:_ and the energy thicknessis given by
/

3 | 0.22 vo

¢o =j2 Pr4/3 duel N (3-39)
i Ch'_'i

sa£-lo

Note that the momentumand energythicknessesdepend on the

stagnationpoint velocitygradient. At the vicinityof the stagnation

point,followingReference3-9, series solutionsare obtained,i.e.,

0 = eo (1 + a_2) (3-40)

= @o(1 + beZ) (3-41)

where $ is the normalizedstreamwisedistance,i.e.,

¢ = s/RN (3-42)

where RN is the nose ra_us or referenceradius.
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1
!•
_;, The constants given in Equations (3-40) and (3-41) are defined tn

_ill. Reference3-9. Away from the stagnation potnt, the following ,mplicit I
' finite-difference schemeis used:

- si.1) !i'
Fx,I Fx,i.I + (Sl ' + ' , for x f or h (3-43)= 2 (Fx,l-I Fx,I) =

where

2 O (3-44)Ff = rPeUe

Fh = r PeUe(ht,e- hw)¢ (3-45)

dFff

Ff = _ (3-46)

o_. Fh = dFh/dS (3-47)

_I and I is integrationindex along the surface.

_ The solutionscheme is iterativein nature since the Fx,I depends

_I on F' At each integrationpoint, convergenceis necessarybefore

x,I"

' - continuingon to the next point. Convergencecriteriaused are that
i)

changesin both the transfercoefficientsare less than 0.1 percent

_ betweensuccessiveiterations. If the solutionprocedurefails to
i

I converge,it is usuallytracedto vorticallayer effects. (;onvergence

1 failure ariseswheneverthe shock curvatureis large;this leads to largek

inviscidflow entropygradients. However,a defaultprocedureis used in

I the event of nonconvergence.The defaultprocedureis to use a local
i

explicitsolutionobtainedby settingF' = F'
i x,l x,l-l"

:_: 3-1?
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3.4 RESULTSAND DISCUSSION

Resultsobtainedwith the momentum-energyintegraltechniqueoutlined

in Section3.3 are presentedin this section. Extensivevalidationof the

numericalmethod was performedand were reportedin Reference3-9. To check

the accuracyof thismethod, convectiveheatingrate at the stagnationpoint

were compared. Table 3-2 presentsthe assumedprobe configurationand entry

parameters. For these assumedconditions,the Aerotherm-developedTHETA

computercode was run to generatethe freestreamconditions. Table 3-3 shows

the freestreamconditionsas a functionof time, and, in addition,the

conditionsbehind the shock and the convectiveheatingrate at the stagnation

point are listed,where presentcalculationsare comparedwith the calculated

resultsof Moss (Reference3-10).

The resultsof Moss are obtainedwith the HYVIS code. The HYVIS code

accountsfor radiationabsorptionand emissionin the shock layer. The slight

discrepancyin the convectiveheatingrate is due to (1) the approximate

natureof the MEIT methodologyand, (2) couplingin the differntmodes of heat

transfer.

Figure 3-1 and 3-2 show the vorticallayer effectson convectiveheat

flux distributionfor two differentfreestreamconditions. The flow was

assumedto be laminarat the stagnationpoint and up to a streamwisedistance

of 0.1R N. Due to turbulence,heat flux reachesa maximum value and then

falls. The vorticallayer effect is not felt until a streamwisedistanceof

unit nose radius is reachedbecausethe shock is almostnormal up to the

tangencypoint. Beyond the tangencypoint, the curvedshock effectsare felt,

particularlyat the flank regionsof the candidateprobe where an approximate

20 percentincreasein the convectiveheat flux is seen due to the entropy

Iayer.

3-13
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Table 3-2. Probe Configurationand Entry Parameters

X Probe Confi9uratlon(sphericallybluntedconicalforebody)

_(_ Half cone angle (degree) 45Base radius (m) 0.3112
Bluntnessratio 2
Probe mass (kg) 242
Drag coefficient 1.094
Ballisticcoefficient(kg/m2) 181.82

AtmosphericModel (by Orton)

H2/He percentage(volume) 8g/11

Entry Parameters

=i Inertialentry velocity(km/s) 60

Inertialentry angle (degree) -9
Entry altitude(k_) 1000
Entry Iatitude(degree) -6.4
Azimuthangle of inertial

i velocityvector (degree) 72.5

=I
For the candidateprobe, no laminarcalculationswere performedat

i; these entry conditions. Earliercalculationsshowedthat entropylayer

effectswere small for laminarflow conditions.

Figures3-1, 3-2, and 3-3 were generatedfrom the MEIT procedure.

Two types of calculationswere performed: (1) the entropylayer option

was activated,and (2) entropybehind the shockwere assumedto be

constant.

Figure 3-3 shows the curved shock effecton the convectiveheat

flux for the entire trajectory. Freestreamconditions,tabulatedin

Table 3-3, were used. As shown,during the early part of entry and until

the peak heatingtime during the trajectory,the vorticallayer effects

are significant;an approximate20 percentincreasein convectiveheatflux

due to vorticallayer is seen. During the post-peakheatingtime of the

3-14 ]!
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200 -- Entry angle = -7.5° _
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Figure 3-I. Effectof EntropyLayer on ConvectiveHeatingRate at
Peak HeatingTime During the Trajectory
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Figure 3-3. Effect of EntropyLayer on ConvectiveHeatingRate
for the CompleteJupiterNominalEntry Trajectory
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"I I trajectory,the curved shock effectsstart to decrease. The reason is

I that duringthe pro-peak heatingtime of the trajectory,the mass

' entrainedin tt_eshock layer increasesand reachesa maximum. Inaddition,duringthis phase of the entry, the freestreamvelocityof the

probe is high. This increasesthe kineticenergy in the boundarylayer

and increasesthe convectiveheat flux. During post-peaktime of

trajectory,the probe has slowed down considerably. This reducesthe net

increasein the kineticenergy in the boundarylayer.

3.5 CONCLUSIONS

For the analysisand calculationsperformed,the following

conclusionsare reached:

i Entropy layer effectsincreasethe convectiveheat flux by as

much as 20 percent

• The effectsof vorticallayer are significantduring the

pre-peakheatingtime of trajectory
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SECTION4

A FEASIBILITY STUDYFOREXPERIMENTAL
ASSESSMENTOF HEATSHIELDSPALLATION

The candidateheatshieldmaterialfor the Galileoprobe program is ii

carbon-phenolic.A recentstudy (Reference4-1) suggestedthatmechanical 'i

erosion,also called spallation,is an importantfactor to be considered

duringthe designof probe heatshield,and that there are currentlyno

pxperimentaldata on carbon-phenolicperformancein representativeJupiter

entry environment_. Althoughseveralmechanicalerosionmodels exist,

:T_I( none have been verifiedwith experimentaldata for heatingenvironments

_'_"_ typicalof Jupitere_,try.A study followinga recommendationfor an

. experimentalprogramto evaluatethe performanceof carbon-phenolicin a

-_ typicalJupiterentry environmentwas undertaken. The first step defined
C

an optimumfeasibleexperimentto assessthe carbon-phenolicspallation;
,!
ti_I the purposeof which was to reviewthe availableliteraturear,d collect

existingdata on carbonphenolicspallation,identifythe conditionsto be
= L .

simulatedin an experiment,locatea facilitythat can generatethe

requiredconditions,and finally,definethe test conditionsfor the

experiment. The followingsubsectionsbrieflyreview the available

experimentaldata on carbon-phenolicspallation,summarizesthe

ii theoreticalmodels on spallation,simulationparameters,surveyof test
facilities,and selectionof a test facility. In addition,a preliminary

_ii- 4-I
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.s c'_,perink'uti.';,tl';L_defined, mid. I_,tsL,d L_uthis study. ,IIt,stpru.qr,_mi,;

rt,cuulueudedtu ,tsses._the he,tl._hleldspall,diou.
,,_

'_ 4.1 L|IIRAI'LIRISLIRVLY

i-_ l.:,_rl_un-pheuulic has trequentl.ybeeu ,sed a.,;l'r,,HshiL,Id matt,r ial on

t,m'th reeutry vehicle._, llec,ulse of Lhe nature of applicatiml, extL,u._ive

tests were cmlducted o,I c,u'bml-pheuoli¢ at v_|'iou._ test faci I it ies ,rod

them'eti¢,tl m,,dels were dew, lupt, d t_ explain the test data. Availal_le

test data aud aualysis to predict ._pallatiou were collected as a part of

t.hi.<, stud.y and wt,re reviewed. A brief ._Unlt_,tt'yon the available Iitm',ttm',,

i_ .qiw, n in the, f_ll,_wim.i sul_._ectio,I.

4. l.t, Experi.!_t.al Eviden__e of S.Pallatiou

Experimental data on ('arLmn-phelmlic is available fro111 laser, arc

,jet, and flight tests. Hassive spallatiL._ was obserw, d iu the laser

env ironments comlucted by Brewer (Refer_,.nce 4-?}, Lundel ! ,_nd [lickey

(Ret_erenco 4-3_, am_ f'|DAC(Ret'erel_ce 4-4_. |_ased m_ the |ascr test data,

it. may be concluded that the carbon-phenol ic heatshield wi 11 spa11 ;

hdwt,v_,l', dtlrill_.l I,l.',;,t,l"te,;t._, the laser l_t,,llll w,ts ilOlltlllilOl'lll, |hll_ I_,,hlillq

to _111LIIItWI_IIhi'atim.1Imzd ¢_nthe test spz,cimen. /_Isc_,t_ _htain im'r_,ased

heat lltlxtm the m_del, the las_,vl_eamwas made sin,illin ,li,u,eter.

lqt_reover,tlm specimt,ns were exposed t_ sudden laser heatim,l w itlmul ,my

pvehe,_t im.1_1 t h_'m_del.

|lilt, t o ._p,|t i a! and tz,l_lpm',l! nomllz i f'or_;li t.y _I" t he bt,,llll, t he inc idezlt

heat flux c,m,i,_t be ,tt't'tlz',zt_,l.y II|_,,tsured. The small la,;er heam ,tiamet_,v

,rod lack of preheatiml may indllCz, therm,tl shock in tim specime_ which may

c,ulse spall at ion.

t',i_'l_Ol|-.!_lh'lh_!ic heal sltit, ld.,, wt,l't, lz,st t,d ill ,11"cjet euV i l'_mnlent s !;y

Schz1_'idm', et al, I,Rt't t,t'em't, 4--b_, I_i,nhi_po _,t ,11, (l_,l _,I"_,11¢_,4--t,_, ,rod

'I - 1_
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Acurex/Aerothe_ (References 4-7, 4-8, and 4-9). Except for Reference

4-7, all of the arc jet tests showed spallation even at low heat flux

conditions (2.6 ka/cm2sec). It was postulated that the heatshield

fabrication methods sucl_ as the layup angle and resin content were
i!

't: responsible for the spallation.
, : Spallation has been inferred from a reentry vehicle (flap) flight

_,t data (Reference 4-1). This was based on the discrepancy between the

1 measuredrecessiondata and the calculatedthermochemicalablation

i allowingfor roughnessheatingaugmentation. Table 4-I summarizesthe

availabledata on carbon-phenolicspallatio)).

Jl 4.1.2 TheoreticalSpallationModels

A literaturesearchyieldedabout six spallationmodels based on

both theory and empiricalconstants. Table 4-2 presentsa summaryof

=-I availablespall models from which the basic mechanismsproposedfor
(

spallationin generalare thermalstresses,pyrolysisgas pressures,and

shear stresses.

Thermalstressescause materialdegradation,includingdelamination

_ and crackingof individualplies. Pyrolysisgas pressure and sllear

stressescause failureand materialremoval. For planetaryentry

, application,shearingstressesare believedto be of secondaryimportance

" due to the anticipatedmassiveblowing.

Howe (Reference4-I0) developeda theoreticalmodel to predictthe

.) import_._ceof spallationfor a uniformlyheated sphericalshell of

._. mmcha,'ring9raphitictypematerial. This model indicatestllatthe rondel

_ radius is not a criticalparameterbecause,for a carbon-phenolictype

material,the hoop stress isessentiallyindependentof the model'_ outer

• p
.. rad i US.

4-3

' .......... "_' -ii! i_i_ i:._........i ¸........................ ........._.............._,,.,_ _ ..... _ __

.... -_ _- _ -° O0000002-TSE03



4-4

"'_ <' - _-_-_- '-.................. 7. ............ Z z.... _._ . . _-" ° . " ., ._--7-c--- ................... -:--,f....

O0000002-TSE04



li o

;.. :.i.................

4-5

....." O0000002-TSE05



Mathieu (Reference 4-11) proposed that spallatton is caused by

_._f thermal stresses, surface shear forces, and pyrolysis gas pressure.
According to Mathteu, spallatton occurs when either the char thickness or

the normal stress exceeds an enpirtcally determined crtttcal value,

Bishop and Dtcristina (Reference 4-6) suggested that char

spallation sharply reduces the material strength due to supporting resin

structure degradation and subsequent material removal by surface shear and

pressure gradient forces, On the basis of experimental and theoretical

results,a correlationfor criticalchar thicknessas a functionof iy

surfacepressurewas developed.

Schneider,.etal. {Reference4-5) developedan analyticalmodel

based on a comprehensiveanalyticaland experimentalstudy on

carbon-phenolicspallation. Spallation,they concur,resultsfrom

thermallyinducedfracturealong ply boundariescoupledwith material

removalby pyrolysisgas pressure/aerodynamicshear. The model agrees

well with the experimentaldata.

Kratsch,et al. {Reference4-12) identifiedthe actionof pyrolysis

gas pressureon charredmaterial and high in-planethermal/structural

stressesas the major causesof heatshieldspallation. They proposeda

sequenceof events leadingto material removalstartingwith the

contentionthat, under extremelyhigh heat flux conditions,

carbon-phenolicgoes throughexplosiveexpansionnormalto the plies which

leadto interlaminarshear failurealong with an outwardrotationof

plies. These delaminatedplies experiencea flexuralfailuredue to the

pyrolysisgas pressure.

In summary,it can be concludedfrom the spallationdata and

theoreticalmodels,that spallationis basicallya material stressrelated

4-6
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_IL_

+i_ phenomenon. Any experiment designed to assess spallatton must accurately
"1_.

+., simulate:

:it • Spaticaland temporaltemperaturedistribution• Material physicalcharacteristics

F_
-_:_ • Pyrolysisgas pressure

' • Shear stress
3

4.2 SIMULATIONPARAMETERS

Surveysof the availabletest data on carbon-phenolicand

theoreticalmodels on spallationindicatedcertainmechanismsfor

spallation. This study'sobjectivescan be met if an experimentcan be

designedto simulatethe Jupiterentry conditionand the physicalfactors

_ that were identifiedas probablecauses of spallation. With that
understanding,a set of simulationparameterswere identifiedand were

dividedinto primaryand secondarysimulationparameters.

, The primarysimulationparametersselectedwere: (I) thermochemlcal

recessionrate, Stc' (2) surfacetemperature,Tw, and (3)material

physicalcharacteristics.

Secondarysimulationparametersselectedwere: (1) surface

pressure,p, (2) surfacepressuregradient,@p/Bs, (3) surfaceshear,

:w' (4) surfacetemperaturerise, BTw/@t,and (5) model geometry.

The followingsubsectionsprovidethe basis for selectingthe above

primaryand secondarysimulationparameters.

4.2.1 PrimarySimulationParameters

Calculatedvaluesof thermochemicalrecessionrate (Stc) and

surfacetemperature(Tw) as a functionof entry time, for a typical

Jovian entry,are shown in Figure4-I and 4-2, respectively;these values

were taken from Reference4-I. As shown in Figure4-1, the peak recession

4-7
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rate is about I cm/sec at the stagnationpoint, and about 0.5 cm/sec at

the end of probe flank. The entry conditionsand model atmosphereused to

I generatethese figurescorrespondto the worst heatingenvironmentsthe

probe may encounter. Based on this, and a desire to simulatea seriesof

test conditions,Sic was assigneda range between0.5 and 1.0 cm/sec.

Figure 4-2 shows that the surfacetemperaturesmay reach as high as

4055°K duringentry. Also shown are the surfacetemperaturesthat have

been recordedin ground based facilities. During laser tests that

producedmassive spallation,the surfacetemperaturereacheda maximumof

3889%. For simulationpurposes,the surfacetemperaturewas assigneda

range between3889°K and 4167%.

1 The literaturesearch indicatedthat material physical

characteristicsplay a key role in spallation. Materialcharacteristics

includecarbon-clothlayup angle,wrap technique,phenolicresin content,

-I and other manufacturingprocesses;however,these factorsare beyond the
2%

.... controlof the present study. Therefore,a test of the baseline

carbon-phenolicmaterialwith known physicalcharacteristicswere

_) considered.

4.2.2 Secondar_SimulationParameters

The primarysimulationparametersdiscussedabovemay have a first

)_ order effecton the experiment,therefore,their accuratesimulationis

critical. However,there are other parametersthat have an influenceon

: carbon-phenolicspallationwhich are of second order importance. Table 4-3

lists these secondarysimulationparametersalong with their levels.

4.3 SURVEYOF TEST FACILITIES

The simulationparametersand their levels identifiedin subsection

4.2, establishedthe requirementsof a test facility;e.g., if the

4-10
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C

,_,I Table 4-3. Primary and Secondary Simulation Parameters and Levels

Parameter Level

Primary

e Recessionrate, Stc 0.5 to 1.0 cm/sec
e Surfacetemperature,Tw 388g to 4167OK

Secondary

e Surfacepressure,pa 10 atm :i
• Surfacepressure 1.6 x 106 N/m2/m

gradient,@p/_sb
e Surfaceshear,Tw ~0
e Surfacetemperature ~lO0OK/sec for Tw<2722OK

rise, @Tw/@to ~550OK/sec for Tw>2722OK

Model nose radius,RNe >0.5 cm

aSurfacePressure,p:
A peak stagnationpoint pressureof 10 atm is predicted.
Simulationis requireddue to it's impacton the pyrolysisgas
velocityas indicatedby Darcy'sLaw.

bSurfacePressureGradient,Bp/@s:
Maximum surfacepressuregradientpredictedis about 1.6 x 106
N/m2/m. Simulationis requireddue to the shearingeffect of
pressuregradienton the char layer.

CSurfaceShear,TW:
Due to the massive blowing,the surfaceshear is predictedto be
essentiallyzero. The experimentshould simulatethe zero shear
conditiondue to the impactof shear on spallation.

dSurfaceTemperatureRise, BTw/Bt:
For temperaturesbelow 2722OK,the predictedsurfacetemperature
rise is comparativelylow -- about 100° K/sec. This shouldbe
simulatedsince a very steep temperaturerise may induce
spallation. Inabilityto simulatethis has been one of the
drawbacksof laser testingto date.

eModelNose Radius,RN:
While no primaryconstraintshave been imposedon the model
geometry,it is judged that the geometryselectedshould allow for

_, baselinewrappingtechniqueand, in addition,some flexibilityin
varyingit. Materialspa!lationcan be induceddue to poor

_(__ wrappingtechniques. Based on a brief surveyof this problem,aminimum nose-radiusof 0.51 cm was selected.
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i), conditionsgiven in Table 4-3 can be obtained in any facility,then the
Y

:_ questionof spallationof carbon-phenolicheatshieldduring entry into

_ Jovian atmospherecan be answered. To find out which ground based

C
.-_ facilitiescan generatethe requiredheatingenvironment,a survey of all

i
test facilitiesin the United States was conductedfor informationon J

their capabilities,limitations,and availabilityfor test in a given time

frame. In addition,the survey gatheredinformationon the use of various

test gases,type of heatingenvironment,and the flexibilityto use other

candidatetest gases.

Figure 4-3 illustratesthe requiredrerJveryenthalpy,HR, for

achievinga thermochemicalablationrate, Stc, of 1 cm/sec as a function

!7 of local pressure,p, at the selectedtwo temperaturelimits. It was

assumed,for calculationpurposes,that carbon-phenolicwas ablatingin an

air environment. Figure 4-3 sets a guide for the requirementsof a test

facilityusing air as the test gas.

The facilitiessurvey includedarc jet, ballisticrange, and laser

heatingenvironments. A summaryof the varioustest facilitiesconsidered

and their operationalcapabilitiesare given in Tables4-4, 4-5, and 4-6.

The 50 MW (AFFDL)and HEAT1 (AEDC)arc jet facilitiesproduceonly

convectiveheatingenvironments. Betweenthese two, the HEAT1 facility

was consideredto be more useful,as it can achievea higher centerline

enthalpy(HcL) at a lower stagnationpressure(Pt2). In addition,the

HEATI facilitywill considertest gases other than air, particularlyrich

mixturesof 02/N2 requiredfor producinglarge Stc" The HIP (MDAC)

facilitywas not incluGedsince the maximum allowedmodel nose radius

(RN) is only 0.4 cm which is smallerthan the selectedmodel size for

simulation.
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Table 4-5. Operational Range of Ballistic RangeTest Facilities

Convective Heating Environment

Maximum Maximum Maximum
Centerline Stagnation Model Size
Enthalpy Pressure To Be Used

Facility (Hc kJ/kg) (P atm) (Radius,_) Comments

RANGE-G 18,560 350 2.75 Can use various test
_ (AEDC) gas mixtures; 300 m

long range facility

HFFAF 41,760 -- 1.85 Various gas mixtures;
(NASA-Ames) 32 m long range; only

shadow graphs
t

Table 4-6. OperationalRange of Laser Test FacilitiesConsidered

RadiativeHeatingEnvironmentOnly

, MaximumRadiative
Heat Flux to 2.54 cm

DiameterModel
Facility (MW/m2) Convnents

TSL 283.8 150 kW lase_
(SANDIA)

PW 908 Large beam variator
(Pratt& Whitney, area ratio 8:1; will
Florida) considerchambertest

4-15
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_, Both the L4001 (NASA-Ames)and GPF (NASA-Ames)facilities create

=): combined convective and radiative heating environments. The radiative flux

_' from L400I facility is derivedfrom a 40 kw laser,while the radiativeflux in

GPF is emittedby the high temperaturetest gas mixtureH2/He. The GPF is

under development,and the operatlon_1capabilitypresentedin Table 4-4 is

achievedat the time of the survey. Higher"power levelsare anticipatedin

the near future. In additionto increasedheating,the combinedheating

__ facilitiescan accommodatelargertestmodels.

Ballisticrange test facilitiesconsideredwere the RANGE G (AEDC) and

HFFAF (NASA-Ames). RANGE G offers f_ee flight,or track guidedmodel

capability. RANGE G is roughly300 m long, has sophisticatedinstrt_entation,

and has a model recoverysystem that offers a uniqueexperimentalcapability.

Models weighingup to 0.450 kg are routinelyaccele,'atedto a launchvelocity

of 5.8 to 6.1 km/sec using a two stage light gas gun. The HFFAF range offers

a higher enthalpyand a shortertest sectionwhich is only 32 m long. The

sl_orterrange is not suitableto observespallation.

The laserfacilitiesco,sideredwere the TSL (SANDIA)a,d PW (Pratta,d

Whitney,Florida)facilities. The TSL facilityhas a 150 kw laseroand while

an exact kw rating for the PW laserwas not availableto us. it is capableL_I'

delivering800 kw/cm_ to a 2.54 cm diametermodel. However,the PW laser

producesa nonunifo_Inbeam with the area ratio of 8:1.

4.4 SELECTIONOF A TEST FACILITYTO PERFORMTHE CARBON-PHENOLIC
SPALLATIONEXPERIMENT

The various test facilities surveyed and discussed i. subsection

4.3 were evaluatedto determinetheir suitabilityfor perfon,ing tlle

spal lat io. experiment.

4-16
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ilil To answerthe basic question,what are the enthalpyand pressure

_ conditionsthat are requiredto producethe primaryand secondary
_ simulationparameterlevels tabulatedin Table 4-3, an analyticalmodel

was constructedbased on steady-stateenergybalanceequations.

FollowingReference4-I, under steady-stateconditions,the surface

energy balanceequation(Q* type), valid only when the surfaceis in the

sublimationregime,simplifiesto

raHab= (1 - VR) qR+ (I- _c) qc" qrr (4-1)

where m is the ablationrate, _'Rand _c are the respectiveradiative ,_

and convectiveblockagefactors,Hab is the heat of ablation,qrr is

the reradiatedsurfaceheat flux, qR is the incidentradia_tflux and

qc is the convectiveflux to the wall.

For a convectiveheatingonly facility,qR = O, and for a

radiativeheatingonly facilityqc = O. The reradiatedheat flux is

obtainedfrom

qrr = ttITw4 (4-2)

where t is the emissivityof carbon-phenolicand is assumedto equal 0.85

in this study,_ is Stefan_Boltzmanconstant,and Tw is surfacetemperature.

The convectiveflux to the surface is usuallywritten in terms of

heat transfercoefficients,i.e.,
J

% = _'eUeCH(HR -H W) (4-3)
)

i.
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t where Pe is boundary layer edge density, ue is edge velocity, CH _s
I'

-_ a dtmenstonaless Stanton numberfor heat transfer, HR is recovery

_: enthalpy,and H is wall enthalpy.

....) The blockage factors given in Equation (4-1) can be found frcm

correlatior_s.For example,the convectiveblockage is obtainedfrom i

1-Vc = ;'J_(1+2_')/2_' (4-4) ),i
a

I

where B' is the dimensionlessblowingparameterB' = m/PeUeCH, and X

is a correlationconstant. For laminarflow it is 0.5, and is set to 0.35 I
,3

for turbulentflow. The radiationblockagefactors,VR' were obtained

from Moss et al. (Reference 4-13).
D

In terms of blowingparameterB', recoveryenthalpyHR, and wall

temperature Tw, Equation (4-1) becomes

(1-VR)qR , eoT_

HR : pe-_eC_ + Hw + B Hab + PeUe-_ (4-5)

Equation (4-5) is used to evaluatethe varioustest facilities.

The AerothermChemicalEquilibrium{ACE) code (Reference4-14) was used to

generatethe blowingparameterB' and wall enthalpyHw as a functionof

surfacepressurep, surfacetemperatureTw, and for varioustest gases.

For calculatingthe B', a 35 percentresin contentwas assumedfor

carbon-phenolic.The densityof the materialwas assumedto be 1.46

gm/cm3. The recessionrate s and B' are relatedby

m = B' PeUeCH= ps (4-6)
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iI
or s = _" PeUeCH

i_ I To meet the negligibleshear simulationrequirement,calculations

were restrictedto the stagnationregiononly. The requiredmodel nose

radiusRN was computedfrom the correlationfrom Rindal,et a1.

(Reference4-15). The correlationis

(4-7)
RN = A2p/PeUeCHiunblown

The correlationconstantA is tabulatedin Table 3-7 for variousgases.

For arbitrarymixtures such as Hz/He, H21N2, and N2102, the ]

correlationconstantA was calculatedbased on the recommendationof Zoby i

(Reference 4-16), i.e.,

2

A = 1/( mi/Ai) (4-8)i

where mi is the mass fractionof componenti and Ai is correlation

constant (from Table 4-7) for component i.

Equations(4,-4)to (4-7)were used to computethe valuesof HR,

PeUeCH, and RN for various test gases/gas mixtures as a function

of surfacepressurep and temperatureTw, and an assumedvalue of Stc.

Using the formu!ated analytical model, the various facilities were

evaluatedon the basis of their heatingenvironment. Convectiveheating

facilitiesare discussedin subsection4.4.1; combined heatingfacilities

,, are evaluatedin subsection4.4.2; and radiativeheatingfacilitiesare

consideredin subsection4.4.3.

L-
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I Table 4-7. Correlation Constant A for Various Gases

Gas ConstantA

Air O.229

Nitrogen 0.218
Oxygen 0.261
Argon O.287
Hydrogen O.0765
Helium 0.121

4.4.1 ConvectiveHeatingFacilities

The convectiveheatingfacilitiesevaluatedare the RANGE G, HEATI,

and GPF in convectiveheatingmode. For the GPF, convectiveheating

accountsfor about 70 percentof currentlyachievedand rated heating

capability.

Carbon-phenolicablationin air, oxygen,nitrogen,argon,and gas

mixturesof H2/He and H2/N2 were investigatedusing the analytical

mode] describedin subsection4.4. The recoveryenthalpy,heat transfer

coefficient,and model nose radiusrequirdto producean assumedablation

(Stc) and surfacetemperaturewere comparedto the facility
rate

operatingcapability.

Figure 4-4 illustratesthis comparisonfor carbon-phenolicablation
I

in air,for an assumed_,alueof Stc = I cm/sec at Tw = 3889 and

4167%. As shown,the enthalpyrequirementsexceedthe facility

capabilityfor pressuresbelow 15 atm. The model nose radius requiredto

simulatethe transfercoefficientis too small,roughlyabout0.05 cm,

which is an order of magnitudesmallerthan the simulationrequirement.

.,Ii 4-20
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Figure 4-4. Carbon-PhenolicAblation in Air EnvironmentandComparison
of Required Enthalpy to Candidate Facility Per6ormance
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t Using nitrogen as a test gas only results in smaller nose radius
due to its lower chemical activity comparedto air. Argon gas was also

considered, but was rejected since it had the samedeficiency as nitrogen
_. due to its inert nature.

Figure 4-5 illustrates carbon-phenolic ablation in oxygen i

environment. Its higher chemtcal activity compared to air, nitrogen, and ....

argon results in significantly larger nose radius. However, the increased

B' requires a larger enthalpy. RANGEG is the only candidate factlity

that would consider oxygen as a test gas at test pressures around

100 arm. For conditions shown in Figure 4-5, the required enthalpy

exceeds RANGEG capability below about 80 atm stagnation pressure. For a

100 arm test pressure, a model nose radius results in 0.64 cm which is

adequate to achieve the desired transfer coefficients.

The convective heating modecapability of GPFwas evaluated considering

i test gas mixturesof H2/He and H2/N2. For H2/He, the volumefractions
o for the gas mixturewas assumedto be 78/22. For H2/N2, the volume

i_ fractionwas taken as 50/50. Figure4-6 and 4-7 show that the GPF in the

convectiveheatingmode is inadequatefor achievingthe desiredlevelof
o_

simulation.

Having determinedthat air, nitrogen,oxygen,and gas mixturesof

_ H2/He and H2/N2 environmentswill not adequatelysimulatethe required

test conditionsin the convectiveheatingfcilities,attentionwas given to

N2/O2 gas mixtureas test gas in RANGE G and HEAT1 facilities. The test

facilitypersonnelat HEAT! indicatedan interestto run the facility at

02/N2 mixturesas rich as 65/35 by volume.

1 Detailed iterativecomputationswere performedto evaluatean optimum

model size for variousassumedablationrates of 0.5, 0.75, and 1.0 cm/sec at
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Figure 4-5. Carbon-PhenollcAblation in Oxygen Environmentand
. Comparison of Required Enthalpy to RANGEG Performance
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Carbon-phenolic ablation in HZ/He (78/22 by volume)
environment

1500 e_
Assumed

40- 15 - " = 1 cm/sec _"
sTC ,_
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e_E _
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x = 1000
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,,...
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Figure4-6. Carbon-PhenolicAblation in H2/He Environmentand
Comparison of Required Enthalpy to GPF Capability
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environmentCarb°n'phen°licablation in equimolal Hz/Na I o_
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bigure 4-7. Carbon-PhenolicAblation in EqulmolalH2/N2 Environment
y and Comparisonof RequiredEnthalpyto OPF Capablllty
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) a given surface temperature of 388g°K. The calculations resulted In

:I model nose radius of 0.635 cm. Figure 4-8 presents the required enthalpy• levels for various mixture ratios of 02/N2 and stagnation pressures.

_. The higher ablation rate (0.75 and 1 cm/sec) test conditions cannot be
!

t_ obtained in the HEAT1facility. However, the performance mapof RANGEG

3 covers even the most severe ablation rate condition.

Figure 4-8 shows the selection of the RANGEG facility as a

candidate facility to conduct carbon-phenolic spallation experiments. The

test conditionsand preliminaryexperimentaldesignwill be discussedinJ

subsection4.5.

4.4.2 CombinedHeatingFacilities

The combinedheatingfacilities,L4001 (NASA)and GPF (NASA),were

evaluatedwith the aid of the analyticalmodel describedin subsection

4.4. For evaluationpurposes,wall temperatureTw was assignedthe

value of local sublimationtemperatureto maximize radiativeheatingby

uncouplingthe mass transferfrom the model nose radius. The incident

radiativeflux qR was obtainedby contactingthe facilities. The

sublimationtemperatureas a functionof pressurewas calculatedusing the

ACE computercode (Reference4-14).

The laser aided L4001 (NASA)facilitywas evaluatedfor the

operatingconditionsof 1 atm pressure and a model size with a nose radius

of 0.635 cm. For these assumedconditions,this facilitysuppliesan

incidentradiantflux qR of 315.6 MW/m2, and has a recoveryenthalpy

of 27.8 MJ/kg. The local sublimationtemperatueof 3819% is below the

minimumwall temperatureof 3B8g°K and the differenceis ignored. For

three assumedvaluesof ablationrates,the total heat rfluxesrequired

are calculated;and the results are summarizedin Table 4-8. The table
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140 HR = 997( 1229( 4616
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Volume fraction of 02 in 02/N 2 gas mixture

Figure 4-8. ConvectiveHeatingFacilitySelection
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Table 4-8. Evaluationof L4001 (NASA)CombinedHeatingFacility

AssumedConditions

Carbon-phenolicablationin air:

P = I aim, Tw = 3819 K, Hw = 22.62 MJ/kg

RN = 0.635 cm, qR = 315.6 MW/m2, HR = 27.8 MJ/kg

Available

Total Flux ..... - .
Assumed Requiredfor

RecessionRate Simulation Convective Radiative Total Flux

(Stc cm/sec) (MW/m2) Flux (MW/m2) Flux (MW/m2) (MW/m2)
,m ,,

O.5 184.7 2.6 157.8 160.4

0.75 271.8 2.0 157.8 159.8

1.0 359.0 1.7 157.8 159.5

I

shows that the simulationcapabilityof L4001 is inadequate. For example,

for an assumedStc of 1 cm/sec,the availabletotal flux is less than

one half that required.

A similarevaluationfor GPF (NASA) is performed,and the results

are providedin Table 4-9. Again, the simulationcapabilityis

inadequate. For producinga recessionrate of I cm/sec,the available

heat flux is roughlyone third of that required.

In summary,the existingcombinedheatingfacilitiesdo not offer

adequatesimulation for carbon-phenolic spalIation experiment.

4.4.3 RadiativeHeatin9Facilities

The radiativehealingfacilitiesevaluaL_dare the two laser

facilities,TSL and PW. The TSL facilitywas evaluatedat atmospheric

; 1

o/
b
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; Table 4-9. Evaluation of GPF (NASA)Arc Jet Facility

,__ AssumedCond|tions

,J Carbon phenolic ablation in H2/He = 50/50 by

volume environment:

P = Z.82 atm, Tw 3903 K, Hw = 22.7 HJ/kg

RN = 2.54 cm, qR -- 110 MW/m2, HR -- 729.8 MJ/kg

Available Flux
Assumed Total Flux

Recession Required for
Rate Stc Simulation Convective Radiative Total
(cm/sec) (MWIm2) (MWlm2) (P_dlm2) (XWlm2)

ii

O.50 183.0 71.1 71.5 142.6

0.75 268.9 54.1 71.5 125.6

1.00 354.7 44.2 71.5 115.7

pressure conditions, and the PW laser facility was evaluated at the

required simulation pressure of 10 arm and has enoughpower and adequate

technology to deliver up to 900 MW/m2 to a 2.54 on diameter model.

Performi,,g the calculations using the analytical model described in

subsection 4.4, showed that at the PWfacility, the required conditions

for simulation can be attained. The TSL facility was found to be

inadequate to test a 2.54 cm diameter model; however, a smaller model of

1.27 cm diameter can be tested. Based on the calculation, the PWfacility

was also selected as a possible candidate for performing the

carbon-phenolic heatshield spailation experiment. Whenperforming the

laser tests, the beamshould be well focused so that there is beam

4-29

, ._,,o.,:........ ,_.-. . _" ,,"'.. o ' ,. ,.. , ., o ,_ ,:' '_ --_; r! ° , _.. ,,
00000002-TSG01



/

uniformity. Also, the model must be preheatedto a certaintemperature

l level of 2500°K, to avoid thermal shocking of the model when the laser

iI heating is activated.

4.5 PRELIMINARYEXPERIMENTDEFINITION

• Between the RANGEG and PWlaser facility, RANGEG was selected as

i the best possible test facility for heatshield spallatton assessment

experiment. The RANGEG faciltty offers sophisticated instrumentation; it

has performed an important role in assessing reentry vehicle nosetip and)
heatshteld material technology, and offers high heat flux capacility along

with wide variation in testingconditions. However, RANGEG cannot be

effectiveat the requiredlow simulationpressureof I0 atm. Since

\ surfacepressure is primaryin spallation,performingexperimentsat high

i) pressureis useful to assessthe sensitivityof pressureon spallation.
[

i) The selectedtest matrix is given in Table 4-10. The indicated

model nose radiusof 0.63 cm is the equivalentradius of curvatureat the
!,

stagnationpoint. A blunt faced model will be designedfor the experiment

to simulatethe requirednegligibleshear and flat heatingprofile.

; 4.6 SUMMARYAND CONCLUSIONS

A study was conducted to define an optimum feasible experiment to

assess carbon-phenolic heatshield spallation. A literature survey yielded

experimental data and theoretical models on carbon-phenolic spallation; a

set of simulation parameters and their levels were established based _n

available data, theory and tile Jupiter worst entry heating environment. A

facilities survey was also conducted, and the capabilities of arc jr, t,

ballistic range, and laser test facilities were obtained.

Based on a Q* type surface energy balance model, requirements to

simulate the conditions were comparedwith the performance availabi! ity of
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_ Table 4-10. Preliminary Experiment Oefinitton and Test Matrtx

'ii:' Text Facility: RANGEG (AEDC)

! I nvi romllent : i;;,/N;_

Model Effective Nose Radius = 0.635 cm

Recession Test gall Recovery Hole Fractions
_i Rate Pressure Temperature Enthalpy of 02/N2

• (Stccmlsec) (P elm) (Tw K) (HR MJ/kg) Gas Mixture .i,

O.SO 100 3889 10.9 37/63

0.75 100 3889 13.9 66/341.00 100 3889 17.6 100/0

i 0.75 150 3889 12.3 53/4/

0.75 75 3889 17.2 80120

facilities. The above comparison led to two candidate facilities: a

convective heating only facility (RANGEG) and a radiative heating only

facility (PW laser1. Based on other considerations° RANGEG is thought to

be the best candidate facility to perform the carbon-phenolic heatshield

spallation experiment. A test matrix was also defined for the RANGEG
T:

fac i I ity.

( fhe model selected is blunt faced with an equivalent nose radius of

"!i
__ 0.635 cm. The test gas selected is 02/N 2 gas mixture avid composition

is varied in the test matrix. However, before the experiment, model

design and 02/N 2 operating map of RANGEG must be investigated.
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SECTION5

GR_HITIC HEATSHIELDSPECIMENS

The entry conditions into the Jovian environment are so severe that

there is doubt about the survivability of the baseline carbon-phenolic

heatshteld material. In addition, the probe is weight critical as a

result of the required, but excessive, heatshield weight. The concern

about the severe reentry conditions and the excessive weight of the

heatshield prompted a recommendation to investigate newly developed metal

containin 9 carbon-carbon materials.

The data resulting from an extensive investigation of the thermal

response of various types of ablative materials was available for

comparison. The materialswhich had been investigatedincludedmany

parametricvariationsof the followin9types:

I. 2-D carbon-pheno!iccomposites

2. 2-D carbon-phenoliccomposites

3. 2-D carbon-carboncomposites

4. 3-D carbon-carboncomposites

5. Bulk graphite

6. Pyrolyticgraphite

7. Graphitizedmetal containingcarbon-carboncomposites

5-I
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A study of movies of the heatedmaterialsIndlcate_that resistance

to spallatlon,mlcrocracklngand fracturewas the order:

{7) >> (6)~ (4) > (3) > (5) > (2) ~ (1)

A study of the effectiveheats of ablationof the same classesof

materialsindicated:

(7) >> (6) > (5)~ (4) > (3) • (2) ~ (1)

The superiorthemomechanical and ablativepropertiesprovideda

basis for recommendingthe investigationof metal containingcarbon-carbon

materialsfor the JupiterProbe heatshield.

The objectiveof this study was to assessthe potentialfor use of

metal containingcarbon-carboncompositesfor Jovian heatshield

application. This sectionsummarizesthe materialselection,composite

fabricationand specimenevaluationeffortswhich were conductedin

supportof this study.

5.1 SELECTIONCATEGORIES

5.1.1 MaterialSelection

Constituentmaterialswere selectedfor their potentialto provide

I heatshieldcompositesbased on specificfactors. The primaryfactor,the

1 need to providetest specimenswith a sufficientrange in metal-matrix-

i) reinforcementtypes,was to evaluatethe viabilityof using metal
:J

_ containingcarbon-carboncompositesas heatshields. Additionalfactors

!_ includedseveralsignificantcost factorssuch as raw materials,

fabricationprocesses,and scale-upfeasibility.

{J

:_ 5.1.2 Matrix Selection

Matriceswere selectedto providecompatabilitywith the metal

additivesand with high temperaturegraphitizationprocessing. The two

generalmatrix type_ consideredwere pitch and resins.

5-2
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-.l Pitch matrices were eliminated due to lack of prior data on the
/

response effects of metal additions to either petroleum or coal tar type

pitch based compo_ttes. Pitch matrices offer low tntttal cost, but the

1, densification processing which would be required to achieve a heatshield

IJ with optimum properties would be prohibitively expensive with currently

available technology.

The two resins chosen as precursors for the composite matrix were a

furfuryl alcohol modified polyester and a high solids content phenolic

' resin. The modified polyester has been used in a series of metal bearing

resins employed in composites which have been graphitized and evaluated

for high energy laser response (References 5-1 and 5-2). The composites

using these matrices require relatively high cost processing ( 2800%

under high pressure). The prior HITCO proprietary matertal response data

provided an excellent baseline reference for the current effort.

Phenolic resins offered an excellent alternative. These resins

provided a matrix with low cost acceptable char yields, and a history of

prior use in carbon-carbon composites. The phenolic resins most widely

used for carbon-carbon composites are SC-1008 and FF-17. Thes_ phenolic

resins are compared in Table 5-1 (References 5-3 and 5-4).

FF-17 was selected as the phenolic resin for use in this task.

) Selectionwas based on two factors: first, the high solidscontentof the

FF-17 permittedsimplifiedprocessingto achieveacceptablequality

laminates;second,as discussedin Section5.2, FF-17 providedsignificant

advantagesin its shrinkagecharacteristicsduring graphitization

processing.

-/
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Table 5-1. Candidate Phenolic Ratrtx Resins

'_ Parameter SC-1008a FF.17b

Viscosity (cps) 180 - 300 2000 - 3000c

Gel time (@ l_OoClmin) -- 5 - 6
. Solids content(percent) 60 - 64 g8 minimum

'_ Solvent required Alcohol None

•_ Char yield (percent) ~45 ~45

7

'" aMonsantoChemicalCorporationphenolicresin
i] blronsidesResin Companyphenolicresin
:_ CAt 71oc

5.1.3 Reinforcements

Two polyacrylonitrile(PAN) precursorbased graphitefabricswere

selectedfor use with FF-17 resin in the Task 9 composites. The first

fabricselectedwas SWB-8. This fabricuses long staplePAN fiber. SWB-8

was used in those compositesincorporatingthe metal containingmodified

polyestermatrix. The discontinuous,staple fiber used as the precursor

in SWB-8 can result in less shrink stresseswhich normallyarise during

graphitizationbut might not provideoptimumcompositestrength.

The secondfabric was Style W-1177. This fabric is a PAN filament

based fabricwoven of continuousCelion graphitefiber. W-1177 is a

specialtywoven fabric having a highlyunbalancedweave with~go percent

of the reinforcingfibers in the warp direction. Thls construction

providesilfghstrengthlevels.

Table 5-2 summarizesthe propertiesof the fabricsused for the

fabricationof specimens.

",,,
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Table 5-2. HeatshleldSpecimenReinforcements

:)
3

Fabric Identity

Ii .......Par_neter SWB-B W-I177

Weave 8 Harness 8 Harness
Satin Satin

Construction(yarns/cm) 15 x 15a 12 x 2b

Thickness(cm) 0.073 0.025

Weight (g/m2) 260 238

Warp x Fill
3000 filamentCelion in warp; 1000 filamentCelion in fill

5.1.4 Metal and GraphiteAdditives

Variousmetals and metal compoundsof the transitionmetal series

were consideredas potentialstartingmaterialsto obtainingmetal

containingcarbon-carboncomposites, lhe compoundsincludedoxides,

carbides,nitridesand halides. As discussedin Section5.2 tungstic

i!_ oxide (W03)was selectedas the metal compound. The primaryreasonsfor

the selectionof tungsticoxide includedcompatabilitywith the selected

FF-17 phenolicresin during laminatecure and postcureand thermal

stabilityduringcarbonization/graphltizatlonto the point of conversion

"l to tungstencarbide.

o Asbury 3376 graphitewas added to the compositeconstituentsas a

I fine, high purityparticulate. This graphite incorporatedto provide
was

I a source to the FF-17 phenolicresin for the
of carbon in addition

WO3 This additivehas been used in previous
reaction + 4C -4, WC + 360.

I _rograms. Table 5-3 summarizesthe propertiesof Asbury 3376 graphite.

I' 5-5
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_). These materialswere employedin fabricationof compositesfor thls

), prog_.m as discussed below.

._ Table 5-3. Properties of ParticulateGraphite

Designation 3376a

Carbon content(percent) 99

Averageparticlesize (microns) 0.75

Density(g/cm3) 2.22

aproductof AsburyGraphite,Incorporated

5.2 FABRICATON

Six compositeswere fabricatedto providehigh energy laser,

thermalconductivityand arc heater ablationspecimens. These composites

were fabricatedusing the constituentsdescribedin the previoussection.

A detaileddescriptionof the characterizationsand processesused in

phenolicmatrix compositefabricationis presented.

5.2.1 CompositesBased on a ModifiedPolyester

Compositesbased on modifiedpolyestersmatrix were procuredfrom

HITCO,Gardena,California. Three of the compositescontainedmetals;one

each tungsten,molybdenumand tungstenwith metal boride. A fourth

compositewas providedwithoutmetal constituentsto serve as a baseline.

As noted in Section5.1, the matrix used in these compositesis a

proprietaryproduct. The fabricationprocessfor the compositesincludes

graphitizationat 2800% under high pressure. The physicalproperties

of the fully graphitizedcompositesare summarizedat the conclusionof

Section5.2.2
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5.2.2 CompositesBased on a PhenolicMatrixThis sectiondiscussesthe fabricationeffortsconductedon metal

containingphenolicmatrix composites. The discussionincludesresin

characterization,metal compound-pheno]icresin comparabilityassessment,

prepreg-processdevelopmentstudiesand the final fabricationmethods used

in preparinggraphitizedcarbon-carboncomposites.

Resin Characterization

A limitedcharacterizationof the FF_17 phenolicresin was

conductedto verify the criticaltemperaturerangesfor curing and to

establishbaselinedata for the char formingcharacteristicsof the matrix

resin. Characterizationwas conductedusing differentialscanning

calorimeter(DSC) and thermogravimetricanalyses(TGA). The resultswere

used to provideguidancefor cure methods to be used in composite

fabrication.!
i

_ The resultsof the DSC analysisconfirmedthat the predominantcure

reactionoccurredbetwee,1125% and 200% with a peak exotherm

;- occurringat 170% (Figure5-1). The TGA results indicatethat

volatileswere releasedwithin the same temperaturerange (Figure5-2).

Figure 5-2 also identifies350% as the temperaturefor the onset of

thermaldegradationof the FF-17 phenolicresin.

.13 The TGA data were obtainedin a static air environment. Since high

temperaturepostcureswere anticipated,this data confirmedthe need for

maintainingan inert atmospherecuring postcure.

The DSC and TGA resultsidentifiedthe criticaltemperatureranges

for cure and postcure.

5-7
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Figure 5-1• DSC Analysisof FF-17 PhenolicResin (3°C/min)
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Metal Compound-PhenolicResin Compatabtltt_ Assessment
, As discussed tn Section 5.1, WO3 was selected as the metal

compoundfor use In the ph¢,noltc matrix composites fabricated under this

(! task. Someof the factors whtch led to selection of W03were discussed
in this preceding section. Additional factors are Identified in the

discussion below.

For high quality composites to be fabricated from metal

compound-phenolic constituents, chemical and processing compatabtltty is

required. The approach used to assess and verify the compatabiltty of

thes_ constituents was to mix candidate metal compoundswith the FF-17

phenolic resin and subject the mixture to a programmedtime-temperature

cycle representative of that anticipated for the end item composite.

Compatab_lity was judged by the pre_ence or absence of chemical reaction

as evidenced _yfoaming and significant weight loss. Those candidate

metal compound-resin mixtures were considered compatable which exhibited

no foaming or weight loss above that resulting from volatile emission

during resin cure. Mixtures were prepared by blending on a 3 roll paint

mill. The blended mixtures were placed in individual foil cups. The cups

were placed in an air circulating oven preheated to 71%. The oven was

then heated to 110°C over 3 hr and the temperature then increased at

30°C/min to t70°C. After visual evaluation and weight changes were

recorded, selected samples were subjected to a 14 hr 170% postcure to

eva]uate the effects of longer cure cycles.

Baseline samples of FF-17 resin with no filler and FF-17 resin with

only Asbury 33/6 fillers were included. Metal compoundsscreened included

MOO3,MoC, Mo2C, MOO2,NO3, W02, and V203. Table 5-4 summarizes

the weight changes and visual observations which resulted from this exposure.

: 5-10
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Based on the above cited criteria and the data presented in

Table 5-4, tungsttc oxide (W03) was considered to be the most compatable

(_-" metal compoundmeeting the ulttmate objective of fabricating specimens
J

representative of heatshteld materials. Tungsttc oxide was chosen over

No2C, which exhibited lower weight loss, for two ma,lor reasons: (1)

;here was extensive data for tungsten containing composites dertved from

modifted po|yester resins, and (2) there was evidence available which

indicated the tn-sttu formation of the tungsten carbide provided a uniform

distribution which was considered desirable for a heatshield.

Table 5-4. Reta] CompoundFF-17 Compatabtltty Evaluation

Cured Postcureda
Inttia] Weight Weight

Sample Weight Change Change
Identity Mtxture (g) (_) (_)

5-1 FF-17 21.535 -0.92e -1.51

7-4 FF-17 + MoO3 36.515 -2.89d c

7-5 FF-17 + 3376b 36.159 -0.50 -

7-4 FF-17 + MoO3 + 3376b 36.720 -2,76 d c

8-8 FF-17 + MoO2 21.331 -0.87 -1.56

8-9 FF-17 + WO3 21.433 -0.77 -1,54

8-10 FF-17 + WO2 21.557 -0.83 -

8-11 FF-17 + V203 21.468 -0.82d -1._

8-12 FF-17 + Ro2C 21.309 -0.72 -1.39

abased on initial weight
bAsbury 3376 graphite powder
CNot postcured due to h|gh weight loss durtng cure
dExtenstve foaming noted
eClear, void free casting

5-11
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_- Preprea-Process Evaluation
v

°_:i The cure characteristics and metal compound-phenolic resin
compatabtltty were described previously in this section. A definition of

__ the response of the prepreg to cure and postcure processing and of the

(! resulting lamtnate to high temperature processt ng was requtred prtor to

, fabrication of the composites from which test specimens would be obtained.
The approach taken to defining the Interrelationships between

i. prepreg, Iaminateprocesslng, Iamlnate propertiesand high temperature
processi ng i nvolved the fol 1owlng steps:

e Prepare a seriesof prepregbatcheswith variationsin matrix

_l pickup (FF-17, WO3 and Asbury 3376)

e Use the prepreg batches to prepare three composites for cure

• Vary the cure and postcure parameters for these composites

• Determine the physical properties of these composites

• Removesections from each composite

• Pyrolyze the sections and redetermine the physical properties

The weight loss, density and linear shrinkage of FF-17 when exposed

to high temperature was available (Reference 5-5). The weight loss, bulk

density and inear shrinkage of FF-17 is essentially complete at 649%

- as noted in Reference 5-5. Consequently, this tnfomatton led to exposure

of the composite sections to an inert atmosphere to the following cycle:

23% to 274% in 5 hr, 274% to 816% in 8.5 hr, held at 816%

l for 1 hr. The samples were then cooled to 23% in the inert at¢o._phere.
The key resu!t of this assessment was that maximumdensity, reduced

porosity and minimum shrinkage was obtained when prepreg pickup was

maintained at approximately 51 percent. The prepreg batches were

_ deliberatelyfabricatedto achievea high (70 percent)pickup and a lowery

V
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(51 percent) pickup range. AS shown in Table 5-5, the composite

fabricated frum the lower pickup prepreg had a 7.34 percent reduction in

thicknessdue to shrinkagein pyrolysis. This is contrastedwith a
'_;

_) lg percent reduction in thickness for the composite fabricated from the

70 percent pickup prepreg.

Composite Fabrication

Figure 5-3 summarizes the fabrication processes used for the

composites for thermal conductivity, arc heater and high energy laser test

specimens.

Prepreg production was successfully accomplished to provide

materials for the composite layup. Typical resin pickup for various

batchesof prepreg is shown inFigures 5-4 and 5-5. These figures

sulmnarizethe resultsof a study conductedto establishthe proper staging

for the prepregbased on a mixtureof FF-17, tungsticoxide, and Asbury

3376 an W-1i77 fabric. The stagingconditionsemployedfor the pie

prepregused for compositefabricationwere extendedtime at elevated

temperaturesto achievereducedprepreg volatilecontentand gel time.

The stagedprepregwas then cut into individualplys. The plys

were stackedinto a mold and cured in accordancewith the time,

temperatureand pressuresshown in Figure 5-6.

Figure 5-7 summarizesthe postcurecycle used for the metal

containingcarbon-carboncomposites. L,_Inatepropertiesincluding

density,thickness,and open porosity_ere determinedafter the cure and

postcurecycles. These resultsarc _am_rized at the end of Section5.2.2.

The graphitizationcycle used for the postcuredcompositesis shown

inFigure 5-8. This graphitizationwas conductedunder low (g/cm2)

staticloads appliedby graphiteblocks. Applicatlonof high pressures

5-13
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Note : Legend t.
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Figure 5-4. Prepreg Volatile Content Variation with Staging Parameters
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Figure 5-6. CompositeCure Cycle
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l wt.ll.I have r_,_ulh_d in i.h_,rrnt limitaLio.s in maximumcnmposite _ize and

:_. higher costs for potential heaLshleld application. A_ shown in Figure 5-3,
i'1

_ the composite_ were then sectioned, One of the sections was submitted to CVD

.j processing. The other section was used to doc_nent the as graphtttzed

composite conditions.

Carbon vapor deposition (CVD) was then conducted on sections of each of

the composites based o, FF-17 matrix. Sections of each of the modified

i_ polyesterbased compositeswere includedin this CVO processing.

CompositeSu_narz

Table 5-6 s_nmarizesthe constituent._for each of the compositesused

in this effort. Table 5-7 summarizesthe fih_l propertiesof each of the six

compositesbefore and afterCVD processing. As shown in Table 5-7, the

i] modifiedpolyesterbased compositeshad significantlyloweropen porosities

and higher densitiesthan the FF-17 based compositesafter 9raphitization.

This was expectedsince the polyesterbased compositeshad been graphitized

under high pressure.

However,after CVD processingof the graphitizedcomposites,the

densityand open porosityof the FF-17 phenolicand the modifiedpolyester

based compositeswere within the same range. This is consideredto be of

major significancefor potentialscale-upheatshieldsized,economical

composites.

5.3 COMPOSITEPERFORMANCEASSESSMENT

Individualspecimenswere machinedfrom the compositesfabricated

as describedin Section5.2. These specimenswere intendedfor thermal

conductivity,high energy laser and arc heater convectiveablation

evaluations. A specimenidentityconventionwas adoptedto providefull

definitionof the test type, compositesource,processinghistoryand specimen

serial number. This identityconventionis presentedin Figure 5-9.

5-21

O0000003-TSA13



_v

i

{i Table 5-6. Composite Constituent Summary

i Reinforcement Additive

!,_ Composite Fabric Precursora Content f

i Identity Type Style Matrix Type (%)

I 1 StaplePAN SWB-8 Polyesterb Mo --
2 StaplePAN SWB-8 Polyesterb W_ --

I 3 StaplePAN SWB-8 Polyesterb e --
4 StaplePAN SWB-8 Polyesterb W 5.3

5 Celiona W-1177 Phenolic W 4.3

6 Celiona W-1177 Phenolic W 4.3

aContinuousPAN graphitefiber
bFurfurylalcoholmodified
CMatrixgraphitizedin composite
dAlso containsmetal boride i
eNo additive I
fWeightpercentmetal

\
}

°
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W X Y - Z

Lspecimen se_ial number: -1, -Z., etc.

Processing designator:

S -- standard

P - post processed (CVD)

Composite designator:* 1, 2, 3, etc.

-Test type

k -- arc test

L = laser test

T - thermal conductivity test

*See Table 5-5 for constituent definition.

:: Figure 5-9. Sp_tmen Identity Convention ,

I.-

V
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l 5.3.1 Laser andArc Heater SpecimensTen arc heater ablation modelswere fully machinedandmountedtn

model holders. Thesemodelsweremachtnedto provide a 30 degree angle

,, betweenthe compositelamtnae and the model test surface.

)! Additionally, 36 high energy laser t_st specimenswere fully

!_ ma:htned to a configuration suttable for the hole boring test mode.

:! 5.3.2 ThermalConducttvit_ AssessmentComparative thermal conductivity wasdetermined on two
;)

i_. representative specimens(Figure 5-10). SpecimenT1P-1 ts a molybden,_
i_ containing, modified polyester basedspecimenwhich hadbeenCVD

processed. SpecimenT6P-1 is a tungsten containing, FF-17 phenolic-based

specimenwhich had also beenCVD
processed.

Thermal conductivity wasdetermined over a 100 to 500% range.

-" The specimenconsisted of a 0.750 in. diameter, 0.060 in. thick disc.

Conductivity measurementswere conductedin a nitrogen environment.

The close agreementbetweenthe themal conductivity results

provide a further basis for considering metal containing carbon-carbon

compositesbasedon either modified polyester or phenolic resins to be

viable heatshield candidates°

5.4 REFERENCES

5-1. Schaeffer, R. E., "Furfuwl Alcohol Hodtfted Polyester RestnsContaining
Hera1 Atoms," U.S. Patent 4,087,482, Hay 1978.

5-2. Dodson,J. D., andWashburn,R. H., "Developmentof Laser Barrier
Haterials (U)," Contract No. N6og21-78-C-0208,Acurex Final Report in
preparation (SECRET).

5-3. HonsantoPolymer_and PetrochemicalsCompany,RestnoxSC-1008Data
Sheet.

5-4 Ironsides Resins, Inc., Resin FF-17, Hodtfted Phenolic Data Sheet
i

5-5. Seibold, Ro W., "Carbonization of Phenoltc Resin," sponsoredunderAtP
Force Materials Laboratory, Contract F33615-73-C-5139.

i 5-25

i

..... ...... ........... 00000003-TSB03



I Figure 5-I0. ThermalConductivityof SpeclmanMateria]s
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: if SECTION6

-_' ENTRYHEATINGENVIRONMENTS

i_. A scientific probe entering the Jupiter atmosphere wtll experience
, extremely high heating rates, orders of magnitude htgher than that

i_ encountered during mannedearth entry. Previous calculations have shown

that a Jupiter probe will lose approximately 25 to 40 percent of its total

weight throughsevereforebodyablation. A comfortablemargin of error in

the calculations would increase the heatshield weight to the point where

the probe could not carry a scientific payload.

Since the heating pulse influences the definition of the heatshield

thickness, an accurate prediction of the time history of both the

radiative and convective heating rates is important. Therefore, all the
w

important factors :nust be included when predicting the heating rates.

Heating rates to the probe surface are influenced by the following

factors:

._ • Atmospheric n_.dels and atmospheric ._tructure

• Entry trajectory, including gravitational forces of the planet,

rotation of the planet, and the nonsphertcal shape of the planet

;' • Atmospheric composition models, which have an effect on the

thermodynamic, transport, and radiative properties

• Probe configuration, including shape, cone angle, mass, and

| drag coefficient

6-1
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t e Probe entry conditions !!

e Probe shape change effects

All of these factors are to be included in any heating environment
calculation procedure. Recently, Balakrtshnan et al. (Reference 6-1)

reported a parametric study on the effect of these factors on heating

rates. A recently updated atmospheric structure of the planet is used in

this study, and the effect of the atmospheric structure on the convective

and radiative .heating is investigated.

According to Reference 6-1, the trajectory calculations performed

were for a spherical planet. However, the planet Jupiter is not an exact

sphere in shape; rather, it is an oblate sphertodal planet. The effect of

a nonspherical shape of the planet on the entry trajectory parameters such

as freestream velocity, density, altitude, and time is also studied.

The cold wall radiative heating to the wall is calculated by an

approximate method in Reference 6-1. In that approach, the entire shock

layer is assumedto be uniform and the conditions behind the shock are

used for computing radiative heat fluxes. However, for probes that have

smallercone angles,ec = 450; the assumptionof uniformshock layer°_ leads to a significant error in the heating rates. Section 3 presented
!

=ol tne effect of entropy layer on convective heating. In this section, the

effectof entropylayerwhich leads to nonuniformshock layer conditionsare analyzedfor a particulartime during the trajectory.

This sectionis dividedinto three subsections. Section6.1

presentsthe effectof atmosphericstructureon heatingrates; Section6.2

discussesthe effectof nonspherlcalshape of planeton entry trajectory;

and Section6.3 illustratesthe influenceof entropylayer on radiative

heating.

6-2
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6.1 EFFECTOF ATHOSPHERICSTRUCTUREONHEATINGRATES

Recently, NASA-AmesResearch Center suggested newmodel atmospheres

for Jupiter based on the data obtatned by the latest Pioneer 10 and

Ptoneer 11 missions and earth-based experiments. The mode] atmospheres

were propo;ed by Orton (Reference 6-4). Last year_ NASA-Ames,on the

basis of Hunten (Reference 6-3) proposed an tnterim model atmosphere. The

parametric calculations repo_ted in Reference 6-1 were performed with the

Hunten model atmospheres. Ftgure 6-1 compares the pressure-altitude

relationship for nominal model atmosphere proposed by Orton and Hunten.

As shown, at htgh altitudes (above 300 km) there ts a significant

difference between the two models. Figure 6-2 shows the variation of

temperature with altitude for the two model atmospheres. For comparison

purposes, only nominal mode] atmosphere is considered. The two models

proposed only changes to the atmospheric structure; the atmospheric

composition was not altered. For example, both the models assumethat the

Jupiter nominal model atmosphere consists of 89 percent by volume of

hydrogen and the remaining 11 percent helium.

Figure 6-3 compares the pressure-temperature relationship for the

nominal mode] atmosphere. The Orton mode_ is shownalong with the model

proposed by Hunten and an earlier atmosphere mode] available in Reference

6-2. As shown, significant differences exist between the three models.

The Aerotherm-developed Trajectory-Heating Environment

Techniques/Analysts (THETA) (Reference 6-_1) was modified to calculate the

trajectory and the heating rate history. The THETAcode uses input tables

of altitude versus pressure, temperature and density. For the Orton

mode], from the table of above quantities supplted to us by NASA-Ames,the

t input to THETAcode was constructed.
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t_ Figure 6-4 shows the effect of model atmosphere on the entry )

_ trajectory. Probe configuration and entry parameters were supplied by '

_ NASA-Ames. Table 3-2 summarizes the probe configuration and entry
l
)_ parameters used in the calculations. As shown, the effect of atmospheric

Ii structure on the trajectory parameters is rather small since, as shown in

l Figures 6-1 and 6-2, the model atmospheres proposed by Orton and Hunten

differ significantly only above 350 km altitude. During the entry

trajectory, the relative entry velocity is not affected until the probe

' descends to an altitude of about 400 km. Significant deceleration of theprobe occurs only in the altitude region between 150 to 50 km range.

Figure 6-5 presents the effect of model atmosphere on cold wall

radiative heating at the stagnation point. Figure 6-6 gives results for

| the convective heating rate. The calculated results show that the effect

-_ of model atmosphere structure on the heating rates is small. Only a
5 percent increase in radiative heating rate is seen; the convective

heating rate increases by about 2 percent. A similar trend ts noticed at

other streamwtse locations.

In summary, differences in the model atmospheric structure of the

planet has a negligible effect on entry tr_lectory and on cold wall

radiative and convective heating rates.

6.2 ENTRYTRAJECTORYMODIFICATIONS

The Aerotherm-developed THETAcode uses a trajectory calculation

schemeto estimate the local value of frcestream auantittes such as

velocity, density, and altitude as a functton of entry time. The

trajectory computational procedure solves the governing equations of

motion that consider gravitational effects of the atmo;phere and angular

rotation of the planet. Reference 6-1 describes tn detail the governing

i 6-7
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(_luations of motion, the solution technique, and compares the results

_. obtained with other trajectory calculation procedures. However, the above(

work assumedthe planet to be spherical in shape and used an effective
4

t mean radius for the planet.

[ it was recently shown +; t the above assumption introduced errors
d

oli in the calculated entry qua,,Llttes. Thts work was undertaken to modify
the trajectory calculational procedure described in Reference 6-1, and to

The required modifications were rather minor. Instead of assigning
a mean value for the radius of the planet, it was calculated, based on the

latitude, minor and major radii of the planet. The equation used was

where oL is the latitude in degrees, Rmajor is the radius of the

planet along the major axis, Rminor is the radius of the planet along

the minor axis, and Rj is the radius of the planet Jupiter.

With this modification, trajectory calculations were performed for

an entry into the nominal medel (Orton) atmosphere. The probe configuration

_ and entry parameters were tabulated in Table 3-2. Figures 6-i and 6-8 show

the effect of nonspherical nature of the planet on freestream velocity and

i density, respectively.
'7 As shown, the spherical shape model of the planet introduces time

i lag in the time versus veloclty/denslty calculations. For this particular

i case, the time difference between a spherical planet and nonsphertcal(,
/

o! planet is roughly 6 sec. The present results given in Figures 6-7 and 6-8
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are comparedwith other trajectory calculattonal procedures, such as POST

(Reference 6-5) where the agreement was good.

-_, 6.3 COMPARISONOF COLDWALLRADIATIVEHEATINGr_LCULATIONS ;_

/: The cold wall radiative heating to the wall in the THETAcode is

caluclated by an approximate method. This method, for a particular

trajectory point of interest, determines the specific shock layer

conditions. These conditions, assumedto be uniform in the shock laLyer,

are then used to obtain the radiative fluxes from a table of fluxes

computedby RADICLEcode (Reference 6-7). These tables are for a matrix

of pressure, enthalpy, and shock standoff distances. These fluxes are

then corrected for adiabatic cooling. The cooling correction factors were

generated on the basis of benchmark solutions obtained by the RASLEcode

(Reference 6-8). However, at the time of preparation of THETAcode,

benchmarksolutions by RASLEcode was available only at the stagnation

point. Therefore, the cooling corrections used in THETAcode was based on

stagnation point results.

Recently, benchmarksolutions with the RASLEant HYVI$ codes

(Reference 6-6) were made available. Figure 6-9 compares the cold wall

radiative heating distribution around the body calculated by the benchmark

type code (HYVIS) and by approximate type code (THETA), and the marked

differences in the heating rates between the two procedures were noticed.

Since the approximate type codes are used for parametric design studies,

it was important to be discreet with the results. This study was

undertaken to find out the reasons for the large differences between the

two codes.

As seen in Figure 6-9, the cold wall radiative heating rates,

computedby the two codes, at and near the stagnation point up to a s/RN
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value of 0.4 are nearly equal. However, for values of s/RN larger than

0.4, the heating rates between the two codes differ by a factor of 2. To

/_ analyzethe differences,a particularstreanmwlselocation,s/RN = 0.79, '

J was selected.

Z_A Hoss (Reference 6-6), using the HYVIS code, solved the thin shock

i'1 layer equations and obtained the temperature and pressure distributions in '
the shock layer. Figure 6-10 presents the shock layer properties, for the

selected trajectory point, as obtained by Hoss. In addition, Figure 6-10

showsthe shock layer conditions obtained by the THETAcode; the shock Q

layer is assumedto be uniform in the THETAcode. According to the HYVIS

code, most of the shock layer is at a higher temperature compared to the

shock (surface) temperature. This is due to the entropy layer and its

effect was considered in detail in Section 3.

From Figure 6-10, it can be also seen that the entropy layer does

not markedly affect the pressure distribution in the shock layer.

Therefore, the assumption of uniform pressure in the shock layer is valid;

however, the assumption of uniform temperature is not valid. The higher

temperature entropy layer contributes significantly to the radiative flux.

To check the computations of HYVIS, the temperature and pressure

distributions in the shock layer are input into the RADICLEcode.

Assuming that the shock layer is nonuniform, and using the shock standoff

distance calculated by the HYVIS code, the RADICLEcode was used to

predict the radiative flux to the wall equaled to 105 MW/m2 which

compared well wtth that predicted by HYVlS, which was equal to

107.2 MW/m2. Figure 6-11 illustrates the results. Though there are

differences in the spectral r_dlative heat fluxes to the wall, the

integrated values agree reasonably well. Figure 6-11 compares only the
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continuum spectral fluxes. Stmtlar agreement for ltne spectral fluxes

were also obtained.

:t In summary, this study indicated that the uniform shock layer

assumption leads to erroneous results. The nonuniformtty tn the shock
.$

layer resultsbecauseof the entropylayer. The availableapproximate

•_ computercodes to predictthe radiativeheatingrate historyare to be

modified to includethe entropylayer affects.
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